Convert megapascal [MPa] to newton/millimeter² [N/mm²] • Pressure, Stress, Young’s Modulus Converter • Common Unit Converters • Compact Calculator • Online Unit Converters (2024)

Random converter

Convert megapascal [MPa] to newton/millimeter² [N/mm²]

1 megapascal [MPa] = 1 newton/millimeter² [N/mm²]

Magnetomotive Force

Did you know you can easily create a small motor using simple things: a magnet, a battery, a screw and a piece of copper wire? Click or tap to find out how to make it!

Convert megapascal [MPa] to newton/millimeter² [N/mm²] • Pressure, Stress, Young’s Modulus Converter • Common Unit Converters • Compact Calculator • Online Unit Converters (1)

A working pressure setting of most pressure cookers is 1.5 to 2 standard atmospheres or 22 to 29 psi

Overview

Gauge Pressure

Atmospheric Pressure

Pressure Suits

Hydrostatic Pressure

Pressure in Geology

Natural Gemstones

Synthetic Gemstones

The High-Pressure High-Temperature (HPHT) Process

Learn technical English with this video!

Overview

Convert megapascal [MPa] to newton/millimeter² [N/mm²] • Pressure, Stress, Young’s Modulus Converter • Common Unit Converters • Compact Calculator • Online Unit Converters (2)

A balloon bursting at TranslatorsCafe.com office

Pressure is defined as force per unit of area. If the same force is applied to two areas, a smaller and a larger one, the pressure would be greater for the smaller area. You will probably agree that it is less scary to be stepped on by someone wearing running shoes than by someone wearing stilettos. For example, if you try pushing a sharp knife down through a carrot or a tomato, you will cut it. The area where the force is applied is small, so the pressure is high enough to cut through the object. If, on the other hand, you use a blunt knife, you will not be able to cut through because the area is greater and the pressure is lower as a result.

The SI unit for pressure is the pascal, which is a newton per square meter.

Gauge Pressure

In some cases, pressure of gases is measured as the difference between the total or absolute pressure and the atmospheric pressure. This is known as gauge pressure, and it is the pressure measured when determining the air pressure in car tires. Measuring devices often show gauge pressure, although absolute pressure sensors are also in use.

Atmospheric Pressure

Atmospheric or air pressure is the pressure of air in a given environment. It usually refers to the weight of the column of atmospheric air above the unit surface area. Atmospheric pressure affects weather and temperature. Considerable changes in the atmospheric pressure cause discomfort for people and animals. The decrease in atmospheric pressure can cause psychological and physical discomfort for people and animals, or even death. For this reason, airplane cabins, which would otherwise experience low air pressure at cruising heights, are artificially pressurized.

Convert megapascal [MPa] to newton/millimeter² [N/mm²] • Pressure, Stress, Young’s Modulus Converter • Common Unit Converters • Compact Calculator • Online Unit Converters (3)

The aneroid pressure gauge is based on a pressure sensor — a set of metallic bellows, which change their shape in response to the pressure, which, in turn, rotates the needle by a linkage connected to the bellows

Atmospheric pressure decreases with the increase in altitude. People and animals, who live at high altitudes, for example in the Himalayas, adapt to the low pressure. Travelers, on the other hand, often need to take precautionary measures to avoid discomfort. Some people, such as mountaineers, are affected by altitude sickness, caused by oxygen deficiency in the blood. This condition can become chronic with prolonged exposure. It typically happens at altitudes above 2,400 meters. In severe cases, people may be affected by high altitude cerebral or pulmonary edema. To prevent altitude-related health problems, medical professionals recommend avoiding depressants such as alcohol and sleeping pills, and also to hydrate well, and ascending to higher altitudes at a slow pace, for example on foot, instead of using transportation. Additional recommendations include a diet high in carbohydrates, and resting well, especially for individuals who ascended quickly. This will allow the body to combat the oxygen shortage, which results from low atmospheric pressure, by producing more red blood cells to carry oxygen, and by increasing heart and respiratory rates, among other adaptations.

Emergency treatment for severe altitude sickness has to be provided immediately. It is paramount to bring the patient to lower altitudes where the pressure is higher, preferably to an altitude below 2400 meters above sea level. Treatment also includes medication and the use of the Gamow Bag. It is a portable lightweight container that can be pressurized by using a foot pump. The patient is put inside this bag to simulate lower altitudes. This is an emergency treatment and the patient still needs to be transported to lower altitudes.

Low atmospheric pressure is also used by athletes, who sleep in simulated high-altitude environments but exercise in normal conditions. This helps their bodies to adapt to high altitudes and start producing greater amounts of red blood cells, which, in turn, increases the amount of oxygen carried through their body, and enhances their athletic abilities. For this purpose athletes often use altitude tents or canopies, which have low atmospheric pressure inside.

Pressure Suits

Convert megapascal [MPa] to newton/millimeter² [N/mm²] • Pressure, Stress, Young’s Modulus Converter • Common Unit Converters • Compact Calculator • Online Unit Converters (4)

NASA space shuttle Atlantis exhibit at the Kennedy Space Center

Astronauts and pilots who have to work at high altitudes use pressure suits to compensate for the low air pressure. Full-pressure suits are used in space, while partial-pressure suits, which provide counter-pressure and assist breathing at high altitudes are used by pilots.

Hydrostatic Pressure

Hydrostatic pressure is the pressure of fluid caused by the force of gravity. It is an important factor not only in engineering and physics, but also in medicine. For example, blood pressure is the hydrostatic pressure of blood on the blood vessel walls. It usually refers to arterial pressure and is represented by two numbers: systolic or maximum pressure and diastolic or minimum pressure during a heartbeat. The instrument used to measure blood pressure is called a sphygmomanometer. Millimeters of mercury are used as units for blood pressure measurements, even in countries like the USA and the UK, where inches are used for measuring length.

Convert megapascal [MPa] to newton/millimeter² [N/mm²] • Pressure, Stress, Young’s Modulus Converter • Common Unit Converters • Compact Calculator • Online Unit Converters (5)

Digital blood pressure meter or sphygmomanometer

A Pythagorean cup is an interesting device, which uses the principles of hydrostatic pressure. According to legend, it was designed by Pythagoras to moderate wine drinking. Other sources mention that this cup was meant to regulate the drinking of water during a drought. It usually has a stem and always has a dome inside of it, which allows liquid to enter from the bottom through an embedded pipe. This pipe runs from the bottom of the stem of the cup to the top of the dome, then bends, and opens into the cup, as in the illustration. Liquid enters the pipe through this opening. The other side of the pipe that runs through the stem also has an opening at the bottom of the stem. The design and operating principles of a Pythagorean cup are similar to the ones in modern toilet bowls. If the liquid that fills the cup is above the top of the pipe, then it spills through the bottom of the cup, due to hydrostatic pressure. If the liquid is below that level, one can use the cup in a conventional way.

Pressure in Geology

Convert megapascal [MPa] to newton/millimeter² [N/mm²] • Pressure, Stress, Young’s Modulus Converter • Common Unit Converters • Compact Calculator • Online Unit Converters (6)

A quartz crystal illuminated with a red laser pointer

Pressure is a critical element in geology. The formation of gemstones requires pressure, both for the natural and laboratory-made synthetic gemstones. Crude oil is also formed by intense pressure and heat from remnants of plants and animals. In contrast to gemstones, which mostly form in rock formations, oil is generally formed in the beds of water such as rivers and seas. Organic material is covered with sand and silt, which gradually accumulates above it. The weight of the water above and the sand exert pressure. With time, these materials are buried deeper and deeper and reach several kilometers below the Earth's surface. As the temperature increases by about 25 °C per each kilometer below the surface, it reaches 50-80 °C at these depths. Depending on the total temperature and temperature fluctuation, gas may be created instead of oil.

Convert megapascal [MPa] to newton/millimeter² [N/mm²] • Pressure, Stress, Young’s Modulus Converter • Common Unit Converters • Compact Calculator • Online Unit Converters (7)

Diamond tools

Natural Gemstones

Gemstone formation varies, but often pressure is an important factor. Diamonds, for example, are created in the mantle of the Earth, where intense pressure and temperatures are present. They then emerge on or near the surface during volcanic eruptions, when magma carries them up. Some diamonds come to Earth inside meteorites, and scientists speculate that their formation on other planets is similar to Earth.

Synthetic Gemstones

The synthetic gemstone industry on the industrial scale started in the 1950s, and it is currently expanding. Some consumers still prefer mined gemstones, but there is a shift in consumer preferences, especially because of the many problems with gemstone mining that came to light recently. Many consumers choose synthetic gemstones not only because of the lower price, but also because they believe that lab-produced stones have fewer issues such as human right violations, funding wars and conflicts, and child labor.

One of the methods for growing diamonds in the laboratory, the high-pressure high-temperature (HPHT) method, is by subjecting carbon to high temperature over 1000 °C and pressure of about 5 GPa. Generally, diamond seeds are used as a base and graphite is a high-purity carbon source from which the new diamond grows. This method is common, especially for making gemstones, because it is cheap compared to the alternative methods. These laboratory-grown diamonds have similar and sometimes superior properties to naturally-formed diamonds, depending on the manufacturing method. They are often colored, however.

Diamonds are widely used for industrial purposes due to their properties, especially hardness. Optical qualities, as well as heat conductivity and resistance to alkalis and acids, are also valued. Cutting tools use diamond coating, and diamond powder is included in abrasive materials. Currently, a large portion of industrial diamonds is made in the laboratories because synthetic production is cheaper than mining, and also because the demand for industrial diamonds cannot be met through mining exclusively.

Some companies now offer memorial diamonds. Those are grown from the carbon that was extracted from the hair or the cremation ashes of the deceased. The manufacturers market these diamonds as a memento to celebrate the life of loved ones, and they are gaining popularity, especially in the markets of wealthy countries such as Japan and the USA.

The High-Pressure High-Temperature (HPHT) Process

The high-pressure high-temperature process is mainly used when working with synthetic diamonds. However, it is now also used on natural diamonds to enhance or adjust their color properties. Presses of different designs can be used in the process. Cubic-type presses are the most expensive and complicated. They are mainly used for enhancing or changing colors in natural diamonds. The growth within the capsule of the press is about 0.5 carats of rough diamond per day.

References

This article was written by Kateryna Yuri

Unit Converter articles were edited and illustrated by Anatoly Zolotkov

Convert pascal to bar

Convert bar to atmosphere technical

Convert millimeter mercury (0°C) to millibar

Convert pascal to millimeter mercury (0°C)

Convert standard atmosphere to psi

Convert pascal to atmosphere technical

Convert psi to pascal

Convert pascal to standard atmosphere

You may be interested in other converters in the Common Unit Converters group:

Length and Distance Converter

Mass Converter

Dry Volume and Common Cooking Measurements

Area Converter

Volume and Common Cooking Measurement Converter

Temperature Converter

Energy and Work Converter

Power Converter

Force Converter

Time Converter

Linear Speed and Velocity Converter

Angle Converter

Fuel Efficiency, Fuel Consumption, and Fuel Economy Converter

Numbers Converter

Converter of Units of Information and Data Storage

Metric Prefixes Converter

Data Transfer Converter

Currency Exchange Rates

Men’s Clothing and Shoe Sizes

Women’s Clothing and Shoe Sizes

Compact Calculator Full Calculator Unit definitions

Online Unit Converters Common Unit Converters

Do you have difficulty translating a measurement unit into another language? Help is available! Post your question in TCTerms and you will get an answer from experienced technical translators in minutes.

Common Unit Converters

Length, mass, volume, area, temperature, pressure, energy, power, speed and other popular measurement unit converters.

Pressure, Stress, Young’s Modulus Converter

Pressure is the ratio of force to the area over which that force is distributed. In other words, pressure is force per unit area applied in a direction perpendicular to the surface of an object.

Pressure may be measured in any unit of force divided by any unit of area. The SI unit of pressure is the pascal (Pa). One pascal is defined as one newton per square meter. A pressure of 1 Pa is small, therefore everyday pressures are often stated in kilopascals (1 kPa = 1000 Pa). The pressure in car tires can be in the range of 180 to 250 kPa.

In continuum mechanics, stress is a measure of the internal forces acting within a deformable body, which either reversibly or irreversibly changes its shape. It is a measure of the average force per unit area of a surface within the body on which the internal forces act. These internal forces arise as a reaction to external forces applied to the body. These internal forces are distributed continuously within the volume of the material body and result in deformation of the body shape. Beyond limits of material strength, this can lead to a permanent shape change or structural failure.

The dimension of stress is the same as that of pressure, and therefore the SI unit for stress is the pascal (Pa), which is equivalent to one newton per square meter (N/m²). In Imperial units, stress can be measured in pound-force per square inch, which is abbreviated as psi.

Using the Pressure, Stress, Young’s Modulus Converter Converter

This online unit converter allows quick and accurate conversion between many units of measure, from one system to another. The Unit Conversion page provides a solution for engineers, translators, and for anyone whose activities require working with quantities measured in different units.

Learn Technical English with Our Videos!

You can use this online converter to convert between several hundred units (including metric, British and American) in 76 categories, or several thousand pairs including acceleration, area, electrical, energy, force, length, light, mass, mass flow, density, specific volume, power, pressure, stress, temperature, time, torque, velocity, viscosity, volume and capacity, volume flow, and more.
Note: Integers (numbers without a decimal period or exponent notation) are considered accurate up to 15 digits and the maximum number of digits after the decimal point is 10.

In this calculator, E notation is used to represent numbers that are too small or too large. E notation is an alternative format of the scientific notation a · 10x. For example: 1,103,000 = 1.103 · 106 = 1.103E+6. Here E (from exponent) represents “· 10^”, that is “times ten raised to the power of”. E-notation is commonly used in calculators and by scientists, mathematicians and engineers.

  • Select the unit to convert from in the left box containing the list of units.
  • Select the unit to convert to in the right box containing the list of units.
  • Enter the value (for example, “15”) into the left From box.
  • The result will appear in the Result box and in the To box.
  • Alternatively, you can enter the value into the right To box and read the result of conversion in the From and Result boxes.

We work hard to ensure that the results presented by TranslatorsCafe.com converters and calculators are correct. However, we do not guarantee that our converters and calculators are free of errors. All of the content is provided “as is”, without warranty of any kind. Terms and Conditions.

If you have noticed an error in the text or calculations, or you need another converter, which you did not find here, please let us know!

TranslatorsCafe.com Unit Converter YouTube channel

Convert megapascal [MPa] to newton/millimeter² [N/mm²] • Pressure, Stress, Young’s Modulus Converter • Common Unit Converters • Compact Calculator • Online Unit Converters (2024)

FAQs

How do you convert MPa to nmm2? ›

1 MPa = 145 psi, 1 MPa = 1 N/mm2. For oil field applications, units of measurement smaller than 1 psi usually have little meaning. Units of MPa may often appear with a decimal.

What is the conversion factor for MPa? ›

1 MPa = 1,000,000 pascals (Pa) 1 psi = 6,894.76 pascals (Pa) MPa value x 1,000,000 Pa = psi value x 6,894.76 Pa. MPa value = psi value / 145.038.

What is a megapascal equal to? ›

A megapascal (MPa) is a unit of pressure that is commonly used in engineering and science. One megapascal is equal to one million pascals, which is the single unit of pressure.

How to calculate the MPa? ›

Inversely, we divide psi by 145.038 to get megapascals. For converting atm to MPa, we multiply atm by 9.86923. Or divide Torr by 7500.62 to get MPa.

What is the unit of MPa in tensile strength? ›

Tensile strength is normally measured in megapascals (Mpa) or newtons per square millimeter (N/mm²). It indicates how much force per unit area is required to stretch or tear a material.

Is kN m 2 equal to MPa? ›

Examples. 12 kN/m² is equal to 0.012 MPa, and 12 MPa is equal to 12000 kN/m². 8 kN/m² is equal to 0.008 MPa, and 8 MPa is equal to 8000 kN/m². 17 kN/m² is equal to 0.017 MPa, and 17 MPa is equal to 17000 kN/m².

How strong is 1 megapascal? ›

A.: A megapascal is a unit of stress or strength (force per unit area) used in the SI (metric) system of measurement. One megapascal equals 145 psi so the shotcrete strength is 5800 psi.

Which is bigger pascal or megapascal? ›

Multiple units of the pascal are hectopascal, kilopascal and megapascal. Firstly, 1 Hectopascal (hPa) = 100 Pascals (Pa), which is equal to 1 milibar. Furthermore, 1 Kilopascal (kPa) = 1000 Pascals (Pa), which is equal to 1 centibar. Also, 1 Megapascal (MPa) = 1000000 Pascals (Pa) = 1 million pascals.

How to calculate strength MPa? ›

Compressive strength test The compressive strength is calculated by using the equation, F= P/A---------1 Where, F= Compressive strength of the specimen (in MPa). P= Maximum load applied to the specimen (in N).

What does 30 MPa mean? ›

In the metric system, mega equals one million – so one MPa is the downward pressure exerted by one million bank notes and 30 MPa is the downward pressure exerted by 30 million bank notes. Whether you're building foundations or pouring exterior flatwork, knowing the recommended MPa for your concrete is vital.

What is 32 MPa concrete used for? ›

32MPa Concrete

In contrast to the 20MPa and 25MPa, the 32MPa is suitable for heavy duty and commercial applications. It is considered high strength and therefore is often used for footings, foundations, pavements and industrial driveways.

How do you convert MPa to N m2? ›

Convert megapascal (MPa) to newton/square meter (N/m²)
  1. ⇣ MPa. N/m² ⇣
  2. 1,000,000.
  3. 10,000,000.
  4. 20,000,000.
  5. 50,000,000.
  6. 100. 100,000,000.

Is MPa the same as N/M^2? ›

n/mm2 must be read as 'Newtons per millimetre squared'. Another name for it is MPa for MegaPascal. If you are familiar with physical force and its effects on any object, you would already have known that MPa is the metric unit of pressure or stress, in terms of force per unit area.

How to convert bar to nmm2? ›

N/mm² pressure related products
barN/mm²🔗
10.1🔗
20.2🔗
30.3🔗
40.4🔗
153 more rows

How do you convert psi to nmm2? ›

1 psi = 6,894.76 pascals (Pa) N/mm² value x 1,000,000 Pa = psi value x 6,894.76 Pa. N/mm² value = psi value / 145.038.

Top Articles
Dairy Free Cheese Sauce with Baby Potato Wedges Recipe
33 Delicious Paleo Recipes To Make In A Slow Cooker
Joi Databas
Time in Baltimore, Maryland, United States now
Regal Amc Near Me
Nehemiah 4:1–23
Jesus Calling December 1 2022
Kentucky Downs Entries Today
Deshret's Spirit
Violent Night Showtimes Near Amc Fashion Valley 18
Best Cav Commanders Rok
Enderal:Ausrüstung – Sureai
Housework 2 Jab
Gma Deals And Steals Today 2022
Price Of Gas At Sam's
Youravon Comcom
Does Breckie Hill Have An Only Fans – Repeat Replay
Epro Warrant Search
Alfie Liebel
Bank Of America Financial Center Irvington Photos
What Is Vioc On Credit Card Statement
Indystar Obits
Bekijk ons gevarieerde aanbod occasions in Oss.
Dwc Qme Database
Two Babies One Fox Full Comic Pdf
Loslaten met de Sedona methode
Directions To Nearest T Mobile Store
Dove Cremation Services Topeka Ks
Pixel Combat Unblocked
Kristy Ann Spillane
Davita Salary
Quality Tire Denver City Texas
Capital Hall 6 Base Layout
How to Watch the X Trilogy Starring Mia Goth in Chronological Order
Polk County Released Inmates
Dr Adj Redist Cadv Prin Amex Charge
Review: T-Mobile's Unlimited 4G voor Thuis | Consumentenbond
Convenient Care Palmer Ma
Puretalkusa.com/Amac
Anderson Tribute Center Hood River
Ethan Cutkosky co*ck
Lucyave Boutique Reviews
Frontier Internet Outage Davenport Fl
Willkommen an der Uni Würzburg | WueStart
Oefenpakket & Hoorcolleges Diagnostiek | WorldSupporter
Automatic Vehicle Accident Detection and Messageing System – IJERT
Bradshaw And Range Obituaries
O'reilly's On Marbach
Jovan Pulitzer Telegram
Unbiased Thrive Cat Food Review In 2024 - Cats.com
Latest Posts
Article information

Author: Maia Crooks Jr

Last Updated:

Views: 5886

Rating: 4.2 / 5 (63 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Maia Crooks Jr

Birthday: 1997-09-21

Address: 93119 Joseph Street, Peggyfurt, NC 11582

Phone: +2983088926881

Job: Principal Design Liaison

Hobby: Web surfing, Skiing, role-playing games, Sketching, Polo, Sewing, Genealogy

Introduction: My name is Maia Crooks Jr, I am a homely, joyous, shiny, successful, hilarious, thoughtful, joyous person who loves writing and wants to share my knowledge and understanding with you.